

openCRX Language Localization Guide

Version 1.5.0

www.opencrx.org

openCRX Language Localization Guide: Version 1.5.0
by www.opencrx.org

The contents of this file are subject to a BSD license (the "License"); you may not use this file except in compliance with the License.

You may obtain a copy of the License here (http://www.opencrx.org/license.htm)

 ii

Table of Contents
1. About this Book .. 1

Who this book is for .. 1
What do you need to understand this book ... 1

2. Prerequisites ... 2
3. Language-specific files.. 3
4. Create files to support a new locale.. 5

user interface configuration files.. 6
code table files .. 9
texts.properties files .. 14
html help pages ... 14
modify Login.jsp... 15

5. Configuring locales for openCRX with web.xml.. 17
Fallback Mechanism.. 18

6. Next Steps ... 19
A. Appendix.. 20
Bibliography... 21

List of Figures
4-1. ui-merge and ui-split.. 6
4-2. Editing user interface configuration file with xmlspy (locales en_US, de_CH, and xx_YY) 8
4-3. code-merge and code-split ... 12
4-4. Editing code table file with xmlspy (locales en_US, de_CH, and xx_YY)..................................... 12

List of Examples
3-1. language-specific files in opencrx-core-CRX.war... 4
4-1. directory structure of the exploded/unzipped file opencrx-core-CRX.war 5
4-2. example output of ui-merge ... 7
4-3. example ElementDefinition containing information for the locale en_US

(default, always included) and gaps for the newly created locale xx_YY 7
4-4. example output of ui-split .. 9
4-5. example output of code-merge... 11
4-6. example CodeValueEntry containing information for the locale en_US

(default, always included) and gaps for the newly created locale xx_YY 12
4-7. example output of code-split.. 13
4-8. extract from the file ...\en_US\text.properties – each line containing a name-value-pair 14
4-9. extract from the file ...\opencrx-core-CRX.war\Login.jsp ... 16
5-1. web.xml containing locale configuration information ... 17
5-2. web.xml containing locale configuration information for en_US, de_CH,

and the new locale xx_YY... 17

 1

Chapter 1. About this Book
This book describes which openCRX files are language-specific and how you can localize openCRX for a (new)
language or a set of (new) languages.

Who this book is for
The intended audience are openCRX administrators.

What do you need to understand this book
This book describes how to get openCRX to work with different language files and how to create (new) language
files for openCRX. You should be comfortable with editing XML files.

 2

Chapter 2. Prerequisites
This book assumes that you have downloaded an openCRX core distribution and set up openCRX for Ant as
described in the openCRX README (including the installation of openMDX).

Creating/changing language-specific files does not require a full installation of openCRX, although it is helpful to
have access to a working installation in order to test your changes. You can create/edit language-specific files
without installing an application server or a database.

 3

Chapter 3. Language-specific files
All the language-specific files of openCRX are contained in the file opencrx-core-CRX.war, which is included in
the file opencrx-core-CRX-web.ear included in the openCRX distribution (please note that this file may already be
exploded/unzipped in which case you will have a directory called opencrx-core-CRX.war instead of a file).
Language-specific files can be grouped as follows:

• user interface configuration (XML files containing language-specific labels and tool tips) – note that the
directory …opencrx-core-CRX.war/config/ui contains subdirectories of the form xx_YY for each implemented
locale; these subdirectories contain the language-specific XML files – the files for US English, for example, are
located in the directory …opencrx-core-CRX.war/config/ui/en_US

• code tables (XML files containing the mapping of codes to the respective language-specific texts) – note that
the directory …opencrx-core-CRX.war/config/code contains subdirectories of the form xx_YY for each
implemented locale; these subdirectories contain the language-specific XML files – the files for US English, for
example, are located in the directory …opencrx-core-CRX.war/config/code/en_US

• strings used by JSP – note that the directory …opencrx-core-CRX.war/config/texts contains subdirectories of
the form xx_YY for each implemented locale; these subdirectories contain language-specific text files named
opencrx.text.properties and text.properties – the file for US English, for example, is located in the directory
…opencrx-core-CRX.war/config/texts/en_US

• html pages (e.g. help pages like helpSearch_xx_YY.html where xx_YY reflects the locale, e.g. en_US)

• login page Login.jsp – the login page is a special case and if you want to offer your users a login page in a
language that is not configured by default you will have to modify the file …opencrx-core-
CRX.war/Login.jsp.

• language configuration – the XML file web.xml contains the language configuration of openCRX

Note: openCRX locale IDs are based on a widely accepted standard where the locale ID xx_YY is composed of an
alpha-2 language code xx (see http://en.wikipedia.org/wiki/ISO_639) and an alpha-2 country code YY (see
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2).

 Chapter 3. Language-specific files

 4

The following directory listing gives an overview of the structure discussed above.

Example 3-1. language-specific files in opencrx-core-CRX.war
opencrx-core-CRX.war
| ...
| helpJsCookie_de_CH.html
| helpJsCookie_en_US.html
| helpSearch_de_CH.html
| helpSearch_en_US.html
| ...
\--WEB-INF
 | ...
 | web.xml
 | ...
 +--config
 | +--code
 | | +--de_CH
 | | | accountcategory.xml
 | | | ...
 | | | utcoffset.xml
 | | |
 | | \--en_US
 | | accountcategory.xml
 | | | ...
 | | utcoffset.xml
 | |
 | +--texts
 | | +--de_CH
 | | | opencrx.texts.properties
 | | | texts.properties
 | | |
 | | \--en_US
 | | | opencrx.texts.properties
 | | texts.properties
 | |
 | \--ui
 | +--de_CH
 | | abstractcontract.xml
 | | | ...
 | | wf.xml
 | |
 | \--en_US
 | abstractcontract.xml
 | | | ...
 | wf.xml
 ...

 In the Open Source distribution of openCRX the user interface configuration files for en_US contain the
complete customization information in addition to the language-specific text strings.

 Modifying language-specific files requires an editor capable of handling files in UTF-8 format. The
UTF-8 encoding of an XML file is indicated at the beginning of the file with <?xml version="1.0"
encoding="UTF-8"?>. More information about encoding of XML files is available at
http://www.w3schools.com/xml/xml_encoding.asp. If you modify language-specific files with an editor that cannot
handle UTF-8 encoded files properly you risk running into problems when starting openCRX with such modified
files because the XML importer will not be able to correctly import them.

 5

Chapter 4. Create files to support a new locale
The following steps are required to create new language-specific files to support a new locale xx_YY:

 1. expand/unzip the file opencrx-core-CRX-web.ear (on the Windows platform you can use Winzip, 7zip
(http://sourceforge.net/projects/sevenzip/), etc.)

 2. expand/unzip the file opencrx-core-CRX.war to a temporary working directory get access to all the
language-specific files (on the Windows platform you can use Winzip, 7zip
(http://sourceforge.net/projects/sevenzip/), etc.)

 3. create user interface configuration files for the new locale xx_YY and translate the relevant text strings

 4. create code table files for the new locale xx_YY and translate the relevant text strings

 5. create texts.properties files for the new locale xx_YY and translate the relevant text strings

 6. create html help pages for the new locale xx_YY and translate the pages

 7. optional: modify Login.jsp for the new locale xx_YY

 8. compress/zip the working directory and create a new file opencrx-core-CRX.war (on the Windows platform
you can use Winzip, 7zip (http://sourceforge.net/projects/sevenzip/), etc.)

 9. create a new file opencrx-core-CRX-web.ear which can be deployed to the application server (on the
Windows platform you can use Winzip, 7zip (http://sourceforge.net/projects/sevenzip/), etc.)

Subsequently, we will look at each of the steps required to create language-specific files in more detail.

 We do not recommend to edit the language-specific files of your openCRX installation as you risk
messing up your installation if anything goes wrong. We rather recommend to copy the file opencrx-core-CRX.war
to a working/temporary directory and then explode/unzip it to get easy access to all the language-specific files.

For this guide it is assumed that

• an openCRX core distribution was set up for Ant in the directory C:\opencrx (as described in the README of
openCRX, including the installation of openMDX) and that

• the file opencrx-core-CRX.war was exploded/unzipped to the directory C:\temp\opencrx-core-CRX.war
yielding the following directory structure:

Example 4-1. directory structure of the exploded/unzipped file opencrx-core-CRX.war
C:\temp\opencrx-core-CRX.war
| ...
\--WEB-INF
 +--config
 | +--code
 | | +--de_CH
 | | \--en_US
 | | \--...
 | +--texts
 | | +--de_CH
 | | \--en_US
 | | \--...
 | \--ui
 | | +--de_CH
 | | \--en_US
 | | \--...
 | ...

 Chapter 4. Create files to support a new locale

 6

user interface configuration files
For advanced openCRX administrators there is a fast procedure to create user interface configuration files for a
new locale xx_YY:

• copy an existing locale directory (e.g. de_CH) with all its files and rename the copied directory to xx_YY

• translate all the label and tooltip strings in the user interface configuration files

This "manual" management of localized files, however, makes it rather difficult to maintain consistency across
multiple locales if the user interface customization changes. The tools ui-merge and ui-split exist to help you
manage and maintain a large number of locales. With ui-merge you can pull together information from several
locales and create XML files that are easy to edit, with ui-split you can push the relevant information back into the
respective locale files.

Figure 4-1. ui-merge and ui-split

The automated approach with ui-merge and ui-split offers the following advantages:

• locales can be managed individually in their respective subdirectories (e.g. the files for locale de_CH are located
in a directory named de_CH)

• it is easy to add/remove locales and you can manage a very large number of locales in a convenient way

• configuring locales for openCRX is a matter of manually editing 1 file only: web.xml

• migrating to new versions of openCRX does not destroy/damage existing locales

• the use of ui-merge and ui-split ensures that all locale files conform to a standard structure (i.e. are schema-
validated)

Furthermore, ui-merge and ui-split support locale-migration as follows:

• if a new version of openCRX contains new elements it is easy to spot the "gaps" in a merged user interface
configuration file

• removed elements (which may still be present in some of your personalized locale files) are protocolled by ui-
merge

• all operations by ui-merge and ui-split create schema-validated files and ensure consistency

 Chapter 4. Create files to support a new locale

 7

Hence, we strongly encourage you to use the provided tools ui-merge and ui-split and do not recommend to edit
individual files manually unless you know exactly what you are doing.

So, let's get started. In a first step, you run ui-merge to create merged user interface configuration files containing
place holders for your new locale xx_YY (and optionally other locales in addition to the default locale en_US to
have more "examples" available for the translation process). Then you edit the merged user interface configuration
files to add the translated strings for the new locale xx_YY. Once you are done with the translations you run ui-split
to extract the relevant files for each locale from the merged user interface configuration files.

The following steps will guide you through the process of creating the user interface configuration files for the new
locale xx_YY:

• Open a new command shell and set the current directory to C:\temp\opencrx-core-CRX.war\config\ui

• Enter the command ant -f C:\opencrx\core\build.xml ui-merge -Darg.sourceDir=%CD% -
Darg.targetDir=%CD% -Darg.locale=xx_YY and execute it to create merged user interface configuration
files containing place holders for your new locale xx_YY (don't forget to adapt the path to the file utilities.xml in
the command line above to reflect your local installation directory! In a Linux/Unix environment you have to
replace %CD% with $PWD to indicate the current directory)

 ui-merge does not overwrite existing files in the target directory. In case of a conflict the existing file is
rename by prepending the string .# to the name of the file. To start with a clean slate it is a good idea to delete all
the files in the directory C:\temp\opencrx-core-CRX.war\config\ui before executing ui-merge (but do not delete
the subdirectories or the files in the subdirectories!).

Example 4-2. example output of ui-merge
C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui>ant -f C:\opencrx\core\build.xml ui-merge -
Darg.sourceDir=%CD% -Darg.targetDir=%CD% -Darg.locale=xx_YY
Buildfile: C:\opencrx\core\build.xml

ui-merge:
 [java] sourceDir= C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\en_US\abstractcontract.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\abstractcontract.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\en_US\account.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\account.xml
 ...
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\en_US\wf.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\wf.xml
 [java] shutdown

BUILD SUCCESSFUL
Total time: 6 seconds

ui-merge creates merged user interface configuration files in the directory C:\temp\opencrx-core-
CRX.war\config\ui. These merged files contain all the ElementDefinitions with labels and/or toolTips:

Example 4-3. example ElementDefinition containing information for the locale en_US
(default, always included) and gaps for the newly created locale xx_YY
...
<ElementDefinition name="org:opencrx:kernel:contract1:Segment">
 <Text type="Label">
 <en_US>Pipeline</en_US>
 <xx_YY></xx_YY>
 </Text>
 <Text type="ToolTip">
 <en_US>all Pipeline Objects</en_US>
 <xx_YY></xx_YY>
 </Text>
</ElementDefinition>
...

 Chapter 4. Create files to support a new locale

 8

You can now use any editor suitable to edit UTF-8 encoded files to add the translations for the locale xx_YY. You
simply insert the translated string between the opening tag <xx_YY> and the closing tag </xx_YY>. If you have
access to an xml editor that features a grid view (e.g. XMLfox (http://www.xmlfox.com/) or xmlspy) it is almost like
filling in a spreadsheet.

Figure 4-2. Editing user interface configuration file with xmlspy (locales en_US, de_CH, and xx_YY)

Even though xmlspy is also available in a free edition (xmlspy Home Edition
(http://www.altova.com/download_spy_home.html)) which allows you to activate the grid view feature for 1 day,
you may want to have a look at some of the following alternatives if you do not want to use a simple text editor
supporting UTF-8 encoding:

• Amaya (http://www.w3.org/Amaya/) (multi-platform, no grid view feature)

• XMLmind XML editor (http://www.xmlmind.com/xmleditor/) (multi-platform, no grid view feature)

• XMLfox (http://www.xmlfox.com/) (Windows only, with grid view feature)

• Cooktop (http://www.xmlcooktop.com/) (Windows only, no grid view feature)

 Modifying language-specific files requires an editor capable of handling files in UTF-8 format. The
UTF-8 encoding of an XML file is indicated at the beginning of the file with <?xml version="1.0"
encoding="UTF-8"?>. More information about encoding of XML files is available at
http://www.w3schools.com/xml/xml_encoding.asp. If you modify the user interface configuration files with an
editor that cannot handle UTF-8 encoded files properly you risk running into problems when starting openCRX
with such modified files because the XML importer will not be able to correctly import them.

As you will realize, there are quite a lot of strings to translate. However, you might get away with translating a
subset of the existing labels/toolTips by making use of the Fallback Mechanism built into openCRX in the case
where no label/toolTip exists for a particular locale. The fallback mechanism is explained in detail in Fallback
Mechanism.

 It might be helpful to have additional locales available in the merged user interface configuration files to
make the translation process easier (e.g. if you want to create a French translation it might be helpful to have the
English and the German versions available in the same file). ui-merge supports merging of multiple locales into a
single file. When calling ui-merge you can use the parameter -Darg.locale to provide a list of all the locales (put

 Chapter 4. Create files to support a new locale

 9

the list in quotes "..." and separate individual locales with slashes, e.g. "aa_BB/cc_DD/ee_FF") that you want to
merge (note that there is no need to specify the locale en_US as this default locale is always included). For
example, to merge the locales en_US, de_CH, and xx_YY you would use the following command line:
ant -f C:\opencrx\core\build.xml ui-merge -Darg.sourceDir=%CD% -Darg.targetDir=%CD% -Darg.locale="de_CH/xx_YY"

 When calling ui-merge you can use the parameter -Darg.format=schema to produce merged files
containing all the formatting information as well (there is no need to specify the default -Darg.format=table).

Once you are done with the translations you need to extract the relevant files for each locale from the merged user
interface configuration files. This is done with ui-split.

• Open a new command shell and set the current directory to C:\temp\opencrx-core-CRX.war\config\ui

• Enter the command ant -f C:\opencrx\core\build.xml ui-split -Darg.sourceDir=%CD% -
Darg.targetDir=%CD% -Darg.locale=xx_YY and execute it to create individual user interface configuration
files for each specified locale (don't forget to adapt the path to the file utilities.xml in the command line above to
reflect your local installation directory! In a Linux/Unix environment you have to replace %CD% with $PWD
to indicate the current directory)

Example 4-4. example output of ui-split
C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui>ant -f C:\opencrx\core\build.xml ui-split -
Darg.sourceDir=%CD% -Darg.targetDir=%CD% -Darg.locale=xx_YY
Buildfile: C:\opencrx\core\build.xml

ui-split:
 [java] sourceDir= C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\en_US\abstractcontract.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\abstractcontract.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-
INF\config\ui\xx_YY\abstractcontract.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\en_US\account.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\account.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\xx_YY\account.xml

 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\en_US\wf.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\wf.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\ui\xx_YY\wf.xml
 [java] shutdown

BUILD SUCCESSFUL
Total time: 7 seconds

ui-split creates all the required directories and files for the new locale xx_YY. In particular, the directory
C:\temp\opencrx-core-CRX.war\config\ui should now contain a subdirectory xx_YY with all the user interface
configuration files specific to locale xx_YY.

 ui-split does not overwrite existing files in the target directories. In case of a conflict the existing file is
rename by prepending the string .# to the name of the file. To start with a clean slate it is a good idea to delete all
the files in those subdirectories of C:\temp\opencrx-core-CRX.war\config\ui related to the locale(s) you've been
modifying before executing ui-merge (but do not delete the files in the directory C:\temp\opencrx-core-
CRX.war\config\ui and do not delete the files in the base directory C:\temp\opencrx-core-
CRX.war\config\ui\en_US).

 Chapter 4. Create files to support a new locale

 10

code table files
For advanced openCRX administrators there is a fast procedure to create code table files for a new locale xx_YY:

• add a new entry to the file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\locale.xml
reflecting the new locale xx_YY

• copy an existing locale directory (e.g. de_CH) with all its files and rename the copied directory to xx_YY

• translate all texts in the code table files

 You must ensure that the index number in locale.xml matches the index number in web.xml for this
newly added locale (e.g. if xx_YY is assinged to index number m in locale.xml then xx_YY must be assigned to the
index number m in web.xml). See also Configuring locales for openCRX with web.xml

This "manual" management of localized files, however, makes it rather difficult to maintain consistency across
multiple locales if code tables are modified/extended. The tools code-merge and code-split exist to help you
manage and maintain a large number of locales. With code-merge you can pull together information from several
locales and create XML files that are easy to edit, with code-split you can push the relevant information back into
the respective locale files.

Figure 4-3. code-merge and code-split

The automated approach with code-merge and code-split offers the following advantages:

• locales can be managed individually in their respective subdirectories (e.g. the files for locale de_CH are located
in a directory named de_CH)

• it is easy to add/remove locales and you can manage a very large number of locales in a convenient way

• configuring locales for openCRX is a matter of manually editing 1 file only: web.xml

• migrating to new versions of openCRX does not destroy/damage existing locales

• the use of code-merge and code-split ensures that all locale files conform to a standard structure (i.e. are schema-
validated)

 Chapter 4. Create files to support a new locale

 11

Furthermore, code-merge and code-split support locale-migration as follows:

• if a new version of openCRX contains new codes it is easy to spot the "gaps" in a merged code table file

• removed codes (which may still be present in some of your personalized locale files) are protocolled by code-
merge

• all operations by code-merge and code-split create schema-validated files and ensure consistency

Hence, we strongly encourage you to use the provided tools code-merge and code-split and do not recommend to
edit individual files manually unless you know exactly what you are doing.

In a first step, you run code-merge to create merged code table files containing place holders for your new locale
xx_YY (and optionally other locales in addition to the default locale en_US to have more "examples" available for
the translation process). Then you edit the merged code table files to add the translated strings for the new locale
xx_YY. Once you are done with the translations you run code-split to extract the relevant files for each locale from
the merged code table files.

The following steps will guide you through the process of creating the code table files for the new locale xx_YY:

• add a new entry to the file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\locale.xml
reflecting the new locale xx_YY

• Open a new command shell and set the current directory to C:\temp\opencrx-core-CRX.war\config\code

• Enter the command ant -f C:\opencrx\core\build.xml code-merge -Darg.sourceDir=%CD% -
Darg.targetDir=%CD% -Darg.locale=xx_YY and execute it to create merged code table files containing
place holders for your new locale xx_YY (don't forget to adapt the path to the file utilities.xml in the command
line above to reflect your local installation directory! In a Linux/Unix environment you have to replace %CD%
with $PWD to indicate the current directory)

 code-merge does not overwrite existing files in the target directory. In case of a conflict the existing file
is rename by prepending the string .# to the name of the file. To start with a clean slate it is a good idea to delete all
the files in the directory C:\temp\opencrx-core-CRX.war\config\code before executing code-merge (but do not
delete the subdirectories or the files in the subdirectories!).

Example 4-5. example output of code-merge
C:\temp\opencrx-core-CRX.war\WEB-INF\config\code>ant -f C:\opencrx\core\build.xml code-merge -
Darg.sourceDir=%CD% -Darg.targetDir=%CD% -Darg.locale=xx_YY
Buildfile: C:\opencrx\core\build.xml

code-merge:
 [java] sourceDir=C:\temp\opencrx-core-CRX.war\WEB-INF\config\code
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\accountcategory.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\accountcategory.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\accountstate.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\accountstate.xml
 ...
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\utcoffset.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\utcoffset.xml
 [java] shutdown

BUILD SUCCESSFUL
Total time: 7 seconds

 Chapter 4. Create files to support a new locale

 12

code-merge creates merged code table files in the directory C:\temp\opencrx-core-CRX.war\config\code. These
merged files contain all the CodeValueContainers with CodeValueEntries:

Example 4-6. example CodeValueEntry containing information for the locale en_US (default, always
included) and gaps for the newly created locale xx_YY
...
<CodeValueContainer name="accountCategory">
 <CodeValueEntry code="0">
 <en_US_short> NA</en_US_short>
 <en_US_long> N/A</en_US_long>
 <xx_YY_short></xx_YY_short>
 <xx_YY_long></xx_YY_long>
 </CodeValueEntry>
 …
...

You can now use any editor suitable to edit UTF-8 encoded files to add the translations for the locale xx_YY. You
simply insert the translated string between the opening tag <xx_YY> and the closing tag </xx_YY>. If you have
access to an xml editor that features a grid view (e.g. XMLfox (http://www.xmlfox.com/) or xmlspy) it is almost like
filling in a spreadsheet.

Figure 4-4. Editing code table file with xmlspy (locales en_US, de_CH, and xx_YY)

 Modifying language-specific files requires an editor capable of handling files in UTF-8 format. The
UTF-8 encoding of an XML file is indicated at the beginning of the file with <?xml version="1.0"
encoding="UTF-8"?>. More information about encoding of XML files is available at
http://www.w3schools.com/xml/xml_encoding.asp. If you modify the code table files with an editor that cannot
handle UTF-8 encoded files properly you risk running into problems when starting openCRX with such modified
files because the XML importer will not be able to correctly import them.

As you will realize, there are quite a lot of strings to translate. However, you might get away with translating a
subset of the existing code values by making use of the Fallback Mechanism built into openCRX in the case where
no code value string exists for a particular locale. The fallback mechanism is explained in detail in Fallback
Mechanism.

 Chapter 4. Create files to support a new locale

 13

 It might be helpful to have additional locales available in the merged code table files to make the
translation process easier (e.g. if you want to create a French translation it might be helpful to have the English and
the German versions available in the same file). code-merge supports merging of multiple locales into a single file.
When calling code-merge you can use the parameter -Darg.locale to provide a list of all the locales (put the list in
quotes "..." and separate individual locales with slashes, e.g. "aa_BB/cc_DD/ee_FF") that you want to merge (note
that there is no need to specify the locale en_US as this default locale is always included). For example, to merge
the locales en_US, de_CH, and xx_YY you would use the following command line:
ant -f C:\opencrx\core\build.xml code-merge -Darg.sourceDir=%CD% -Darg.targetDir=%CD% -Darg.locale="de_CH/xx_YY"

 When calling code-merge you can use the parameter -Darg.format=schema to produce merged files
containing all the formatting information as well (there is no need to specify the default -Darg.format=table).

Once you are done with the translations you need to extract the relevant files for each locale from the merged code
table files. This is done with code-split.

• Open a new command shell and set the current directory to C:\temp\opencrx-core-CRX.war\config\code

• Enter the command ant -f C:\opencrx\core\build.xml code-split -Darg.sourceDir=%CD% -
Darg.targetDir=%CD% -Darg.locale=xx_YY and execute it to create individual code table files for each
specified locale (don't forget to adapt the path to the file utilities.xml in the command line above to reflect your
local installation directory! In a Linux/Unix environment you have to replace %CD% with $PWD to indicate
the current directory)

Example 4-7. example output of code-split
C:\temp\opencrx-core-CRX.war\WEB-INF\config\code>ant -f C:\opencrx\core\build.xml code-split -
Darg.sourceDir=%CD% -Darg.targetDir=%CD% -Darg.locale=xx_YY
Buildfile: C:\opencrx\core\build.xml

code-split:
 [java] sourceDir=C:\temp\opencrx-core-CRX.war\WEB-INF\config\code
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\accountcategory.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\accountcategory.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\xx_YY\accountcategory.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\en_US\accountstate.xml
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\accountstate.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\xx_YY\accountstate.xml
 ...
 [java] loading C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\utcoffset.xml
 [java] writing file C:\temp\opencrx-core-CRX.war\WEB-INF\config\code\xx_YY\utcoffset.xml
 [java] shutdown

BUILD SUCCESSFUL
Total time: 7 seconds

code-split creates all the required directories and files for the new locale xx_YY. In particular, the directory
C:\temp\opencrx-core-CRX.war\config\code should now contain a subdirectory xx_YY with all the code table
files specific to locale xx_YY.

 code-split does not overwrite existing files in the target directories. In case of a conflict the existing file is
rename by prepending the string .# to the name of the file. To start with a clean slate it is a good idea to delete all
the files in those subdirectories of C:\temp\opencrx-core-CRX.war\config\code related to the locale(s) you've
been modifying before executing code-merge (but do not delete the files in the directory C:\temp\opencrx-core-
CRX.war\config\code and do not delete the files in the base directory C:\temp\opencrx-core-
CRX.war\config\code\en_US).

 Chapter 4. Create files to support a new locale

 14

texts.properties files
The files opencrx.text.properties and text.properties contain several strings used by JSP. These files must exist for
each locale configured in openCRX. The following steps will guide you through the process of creating the files
opencrx.text.properties and text.properties for the new locale xx_YY:

• Create the new directory C:\temp\opencrx-core-CRX.war\config\texts\xx_YY

• Decide which locale you want to use as a template (starting point) for your new locale xx_YY. In this example
we will use en_US as a template. Hence, copy the files opencrx.text.properties and text.properties from the
directory C:\temp\opencrx-core-CRX.war\config\texts\en_US to the newly created directory
C:\temp\opencrx-core-CRX.war\config\texts\xx_yy

• Open the file text.properties in the directory C:\temp\opencrx-core-CRX.war\config\texts\xx_YY with a text
editor.

• Each line of the file contains a name-value-pair of the form name=value. Replace the existing values with your
translations and then save the file text.properties with all the changes.

• Open the file opencrx.text.properties in the directory C:\temp\opencrx-core-CRX.war\config\texts\xx_YY
with a text editor.

• Each line of the file contains a name-value-pair of the form name=value. Replace the existing values with your
translations and then save the file opencrx.text.properties with all the changes.

 Use ISO 8859-1 character encoding for the files opencrx.text.properties and text.properties (the reason
being that openCRX relies on the class java.util.Properties of the Java™ 2 platform). For characters that cannot be
directly represented in this encoding, Unicode escapes are used; however, only a single 'u' character is allowed in
an escape sequence. The JDK native2ascii tool can be used to convert property files to and from other character
encodings (e.g. to convert a file texts.properties.uni to text.properties (ISO 8859-1 encoded) you could run
native2ascii -encoding utf-8 texts.properties.uni texts.properties)

Example 4-8. extract from the file ...\en_US\text.properties – each line containing a name-value-pair
Locale=en_US
dir=ltr
LocaleTitle=English (United States)
CancelTitle=Cancel
OkTitle=OK
SaveTitle=Save
SortAscendingText=Click to sort ascending
SortDescendingText=Click to sort descending
DisableSortText=Click to disable sorting
DeleteTitle=Delete
EditTitle=Edit
...

If you don't feel like translating all the values, you can just leave the template values unchanged. However, it is
important that the files opencrx.text.properties and text.properties exist for all configured locales and the files must
contain all name-value-pairs.

 Chapter 4. Create files to support a new locale

 15

html help pages
openCRX html help pages are located in the directory C:\temp\opencrx-core-CRX.war. The following steps will
guide you through the process of creating the html pages for the new locale xx_YY:

• Decide which locale you want to use as a template (starting point) for your new locale xx_YY. In this example
we will use en_US as a template. Hence, make a copy the file helpSearch_en_US.html and name it
helpSearch_xx_YY.html

• Open the file helpSearch_xx_YY.html with an html editor (a simple text editor will also work if you are familiar
with html).

• Once you are done with translating the whole page you save the file helpSearch_xx_YY.html with all the
changes.

Repeat the above steps for the rest of the openCRX html help pages located in the directory C:\temp\opencrx-
core-CRX.war.

 If you don't feel like translating the help pages (or not all of them) you must still create the html pages for
the new locale xx_YY as described above because there is no fallback mechanism for html pages – missing pages
will cause an error 404 (page not found) if a user requests such a page.

 Chapter 4. Create files to support a new locale

 16

modify Login.jsp
The openCRX login page Login.jsp is located in the directory C:\temp\opencrx-core-CRX.war. The login page is
a special case because prior to authentication the user does not have access to the openCRX application (and hence
the openCRX localization features are not available). However, you only need to modify the login page if you want
to offer your users a login page in a locale not already configured. You can add a new locale xx_YY by extending
the code at the appropriate positions (e.g. by searching for "en_US" or "de_CH" which are both locales built into
Login.jsp).

The language specific part of Login.jsp starts with the following lines:

Example 4-9. extract from the file ...\opencrx-core-CRX.war\Login.jsp
 // test whether requested locale is supported
 if((locale == null) ||
 (!locale.equals("en_US") &&
 !locale.equals("de_CH") &&
 !locale.equals("es_MX") &&
 …

Extend all the hash maps following the above code sequence so that the updated login page can fully support the
new locale xx_YY.

 If a login page supports locale xx_YY you can request the login page in that locale xx_YY by appending
the string "?locale=xx_YY" to the default login URL._Example: the URL http://demo.opencrx.org/opencrx-
core-CRX/Login?locale=de_CH directly loads the German login page.

 17

Chapter 5. Configuring locales for openCRX with
web.xml

Configuring locales for openCRX is done by modifying the file web.xml in the directory C:\temp\opencrx-core-
CRX.war\WEB-INF. If you open the file web.xml you will find the following section:

Example 5-1. web.xml containing locale configuration information
…
<!-- locales -->
 <init-param>
 <param-name>locale[0]</param-name>
 <param-value>en_US</param-value>
 </init-param>
 <init-param>
 <param-name>locale[1]</param-name>
 <param-value>de_CH</param-value>
 </init-param>
…

To configure an additional locale for openCRX you need to add a new locale-block. For example, to add the locale
xx_YY you modify web.xml as follows:

Example 5-2. web.xml containing locale configuration information for en_US, de_CH, and the new locale xx_YY
…
<!-- locales -->
 <init-param>
 <param-name>locale[0]</param-name>
 <param-value>en_US</param-value>
 </init-param>
 <init-param>
 <param-name>locale[1]</param-name>
 <param-value>de_CH</param-value>
 </init-param>
 <init-param>
 <param-name>locale[2]</param-name>
 <param-value>xx_YY</param-value>
 </init-param>
…

 Please note that the index number must be unique (i.e. you can only assign locale xx_YY to index
number "2" with locale[2] if no other locale is assigned to index number "2"). Furthermore, index number "0" is
reserved for the default locale (by default, locale en_US is assigned to index number "0").

 You must ensure that the index number in web.xml matches the index number in locale.xml for this
newly added locale (e.g. if xx_YY is assinged to index number m in locale.xml then xx_YY must be assigned the
index number m in web.xml). See also code table files.

 When configuring locales for openCRX it is important that you are aware of the Fallback Mechanism.
Taking into account what happens when there is no localized directory/file/string/entry/etc. available for a
configured locale helps you to control what the user of openCRX is going to see in place of a nicely translated text.

 Chapter 5. Configuring locales for openCRX with web.xml

 18

Fallback Mechanism
The following rules apply for missing localization information (it is assumed that the locale is xx_YY):

user interface configuration

if no entry is found for the respective label/toolTip, then the existing entry of the locale xx_ZZ (i.e. same language
as xx_YY) with the highest index number (see Configuring locales for openCRX with web.xml) is taken. if no
entry is found with the same language xx, then the entry of the default locale (i.e. the locale with index number "0",
usually en_US) is taken.

code tables

if no entry is found for the respective code, then the existing entry of the locale xx_ZZ (i.e. same language as
xx_YY) with the highest index number (see Configuring locales for openCRX with web.xml) is taken. if no entry
is found with the same language xx, then the entry of the default locale (i.e. the locale with index number "0",
usually en_US) is taken.

opencrx.texts.properties and texts.properties

if no entry is found for the respective name, then the existing entry of the locale xx_ZZ (i.e. same language as
xx_YY) with the highest index number (see Configuring locales for openCRX with web.xml) is taken. if no entry
is found with the same language xx, then the entry of the default locale (i.e. the locale with index number "0",
usually en_US) is taken.

html help pages

there is no fallback mechanism – if a page is missing for a requested locale the user will get an error 404 (page not
found)

login.jsp

there is no fallback mechanism – login.jsp is a special case anyway (see modify Login.jsp)

The following description explains the implemented locale fallback mechanism of openCRX in a somewhat more
formal way (only applies to user interface configuration, code tables, and text.properties). Please note that the
locale fallback is based on language xx and not on a fully qualified locale string xx_YY:

• Iterate all locales configured in web.xml starting with index number 0, i.e. locale[0], locale[1], …

• Try to load resources from locale i, i.e. config/code/<locale i>, config/ui/<locale i>, config/texts/<locale i>

• If no resources are found at locale i fallback to resources of locale j, where j = max(J), J = {0} + {j,
locale[i].lang == locale[j].lang}

Example: If e.g. the locales en_US (locale[0]), de_CH (locale[1]) and de_DE (locale[2]) are configured and no
resources are available for de_DE then de_DE falls back to de_CH.

 19

Chapter 6. Next Steps

 20

Appendix A. Appendix

 21

Bibliography
[01] openCRX - the leading open source CRM solution, opencrx.org.

 @ http://www.opencrx.org (http://www.opencrx.org)

[02] openMDX - The leading open source MDA platform, openmdx.org.

 @ http://www.openmdx.org (http://www.openmdx.org)

